Generalizations of Kadanoff’s solution of the Saffman–Taylor problem in a wedge
نویسنده
چکیده
We consider a zero-surface-tension two-dimensional Hele-Shaw flow in an infinite wedge. There exists a self-similar interface evolution in this wedge, an analogue of the famous Saffman-Taylor finger in a channel, exact shape of which has been given by Kadanoff. One of the main features of this evolution is its infinite time of existence and stability for the Hadamard ill-posed problem. We derive several exact solutions existing infinitely by generalizing and perturbing the one by Kadanoff.
منابع مشابه
نگاشت همدیس در طرحهای انگشتی سافمن- تیلور
We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...
متن کاملRandom walks, diffusion limited aggregation in a wedge, and average conformal maps.
We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average, that of the conformal maps associated with random clusters, yields a nontrivial shape which is also not far from...
متن کاملNumerical Solution of the Symmetric Water Impact of a Wedge Considering Dynamic Equations of Motion
In this research, numerical simulation of a symmetric impact of a 2-D wedge, considering dynamic equations in two-phase flow is taken into account. The two-phase flow around the wedge is solved based on finite volume method and volume of fluid (VOF) scheme. The dynamic mesh model is used to simulate dynamic motion of the wedge, thereby the effects of different dynamic meshes in both structured ...
متن کاملThe Development and Application of the RCW Method for the Solution of the Blasius Problem
In this research, a numerical algorithm is employed to investigate the classical Blasius equation which is the governing equation of boundary layer problem. The base of this algorithm is on the development of RCW (Rahmanzadeh-Cai-White) method. In fact, in the current work, an attempt is made to solve the Blasius equation by using the sum of Taylor and Fourier series. While, in the most common ...
متن کاملPresentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem
The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005